- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001200000000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Qu, Qing (3)
-
Zhang, Zekai (3)
-
Balzano, Laura (2)
-
Kwon, Soo Min (2)
-
Song, Dogyoon (2)
-
Shi, Lianghe (1)
-
Tao, Molei (1)
-
Wu, Meng (1)
-
Zhang, Huijie (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 18, 2026
-
Kwon, Soo Min; Zhang, Zekai; Song, Dogyoon; Balzano, Laura; Qu, Qing (, International Conference on Artificial Intelligence and Statistics)In this work, we present a novel approach for compressing overparameterized models, developed through studying their learning dynamics. We observe that for many deep models, updates to the weight matrices occur within a low-dimensional invariant subspace. For deep linear models, we demonstrate that their principal components are fitted incrementally within a small subspace, and use these insights to propose a compression algorithm for deep linear networks that involve decreasing the width of their intermediate layers. We empirically evaluate the effectiveness of our compression technique on matrix recovery problems. Remarkably, by using an initialization that exploits the structure of the problem, we observe that our compressed network converges faster than the original network, consistently yielding smaller recovery errors. We substantiate this observation by developing a theory focused on deep matrix factorization. Finally, we empirically demonstrate how our compressed model has the potential to improve the utility of deep nonlinear models. Overall, our algorithm improves the training efficiency by more than 2x, without compromising generalization.more » « less
-
Kwon, Soo Min; Zhang, Zekai; Song, Dogyoon; Balzano, Laura; Qu, Qing (, Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (AISTATS) 2024,)
An official website of the United States government

Full Text Available